organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Masaki Kakeya, Takashi Fujihara and Akira Nagasawa*

Department of Chemistry, Faculty of Science, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan

Correspondence e-mail: fuji@chem.saitama-u.ac.jp

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.004 Å R factor = 0.056 wR factor = 0.158 Data-to-parameter ratio = 20.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(*E*)-1-Mercapto-1-(*p*-tolylsulfanyl)-*N*-(*p*-tosylmethyl) methanimine: a two-dimensional supramolecular network of S—H···O and C—H··· π interactions

In the crystal structure of the title compound, $C_{16}H_{17}NO_2S_3$, the dihedral angle between the mean planes of the two benzene rings is 70.8 (1)°. There are intermolecular $S-H\cdots O$ and $C-H\cdots \pi$ interactions, and molecules are linked into a two-dimensional network. The layers are further linked together by weak $C-H\cdots O$ interactions.

Comment

In previous papers, we have reported the structures of niobium complexes (Kakeya *et al.*, 2004, 2006). As part of a systematic investigation of their catalytic properties, we report here the crystal structure of the title compound, (I), which was obtained by a reaction of *p*-tosylmethyl isocyanide with a niobium complex. Aromatic sulfonates are used in many biological fields, and crystallographic studies of them have been undertaken in view of their biological importance (Manivannan *et al.*, 2005, and references therein).

The structure of (I), with the atom-numbering scheme, is shown in Fig. 1. Selected bond lengths are given in Table 1.

© 2006 International Union of Crystallography All rights reserved A perspective view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 1

Received 2 February 2006

Accepted 7 March 2006

4071 independent reflections

 $w = 1/[\sigma^2(F_0^2) + (0.0824P)^2]$

+ 0.2134P] where $P = (F_0^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.53 \text{ e} \text{ Å}^{-3}$

 $\begin{array}{l} R_{\rm int} = 0.033 \\ \theta_{\rm max} = 27.9^{\circ} \\ h = -13 \rightarrow 9 \end{array}$

 $\begin{array}{l} k = -12 \rightarrow 12 \\ l = -21 \rightarrow 23 \end{array}$

2711 reflections with $I > 2\sigma(I)$

Figure 2

A view of the two-dimensional network of (I). Dashed lines indicate intralayer $S-H\cdots O$ and $C-H\cdots \pi$ interactions. H atoms not involved in hydrogen bonding have been omitted.

A molecular packing diagram of (I). Dashed lines indicate interlayer C– $H\!\cdot\!\cdot\!O$ interactions. H atoms not involved in hydrogen bonding have been omitted.

The $S-Csp^2$ bond lengths agree with the normal $S-Csp^2$ bond length (1.75 Å; Allen *et al.*, 1987). Other S-C, S-O and S=O bond lengths are comparable to those found in related structures which contain *p*-toluenesulfonyl groups (Manivannan *et al.*, 2005). The dihedral angle between the mean planes of the two benzene rings is 70.8 (1)°. This non-coplanar orientation of the two benzene rings is similar to that in other aromatic sulfonates (Manivannan *et al.*, 2005).

There are two types of hydrogen-bonding interactions, *viz*. S-H···O and C-H··· π (Table 2), connecting neighbouring molecules and forming a two-dimensional network (Fig. 2). The layers are further linked by weak C-H···O interactions, as shown in Fig. 3.

Experimental

To a mixture of $[Nb_2(\mu-Cl)_2Cl_4(\mu-Me_2S)(Me_2S)_2]$ (Kakeya *et al.*, 2006) (0.1 g, 0.17 mmol) and *p*-tosylmethyl isocyanide (0.22 g, 1.1 mmol) in a 100 ml Schlenk tube under an argon stream was added dichloromethane (30 ml). The solution changed from purple to colourless after stirring for 5 min at room temperature. The resulting precipitates were removed by filtration, and the filtrate was concentrated to dryness, leaving a colourless powder. The crude product was washed with *n*-hexane (10 ml) three times and dried under reduced pressure. The compound thus obtained was recrystallized from CH₂Cl₂–*n*-hexane (1:7 ν/ν ; yield 105 mg, 80%). IR (KBr, ν , cm⁻¹): 1727 (C=N). ¹H NMR (CDCl₃): δ 7.5–7.0 (*m*, 8H, C₆H₄), 4.59 (*d*, *J*_{HH} = 7.0 Hz, 2H, CH₂), 2.45 (*s*, 1H, SH), 2.43 (*s*, 6H, CH₃), 2.38 (*s*, 6H, CH₃).

Crystal data

C₁₆H₁₇NO₂S₃ $D_r = 1.369 \text{ Mg m}^{-3}$ $M_r = 351.52$ Mo $K\alpha$ radiation Cell parameters from 2190 Monoclinic, $P2_1/c$ a = 10.2686 (6) Å reflections b = 9.5313(5) Å $\theta = 2.4 - 24.3^{\circ}$ $\mu = 0.44 \text{ mm}^{-1}$ c = 17.5095 (9) Å $\beta = 95.708 (2)^{\circ}$ T = 298 (2) K V = 1705.21 (16) Å³ Plate, colourless Z = 4 $0.25 \times 0.22 \times 0.08 \text{ mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.852$, $T_{max} = 0.966$ 12197 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.158$ S = 1.024071 reflections 201 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected bond lengths (Å).

C1-S1	1.758 (3)	C15-S2	1.741 (3)
C8-S2	1.768 (3)	C15-S3	1.761 (2)
C16-N1	1.445 (3)	O1-S1	1.430 (2)
C16-S1	1.796 (3)	O2-S1	1.430 (2)
C15-N1	1.250 (3)		

able 2		
T J	. b	_

H	[yd	lrogen-	bond	geometr	у ((Α,	°)).
---	-----	---------	------	---------	-----	-----	----	----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$S3-H1A\cdotsO1^{i}$ $C13-H13\cdotsO1^{ii}$ $C2-H2\cdots Cg1^{iii}$	1.13 (4)	2.68 (3)	3.219 (2)	108 (2)
	0.93	2.66	3.420 (4)	139
	0.93	3.02	3.717 (2)	133

Symmetry codes: (i) $-x + 1, y - \frac{1}{2}, -z + \frac{5}{2}$; (ii) -x + 1, -y + 1, -z + 2; (iii) x, y + 1, z. *Cg*1 is the centroid of the C8–C13 ring.

The H atom attached to S3 was located in a difference map and its coordinates were refined, while $U_{iso}(H)$ was fixed at $1.5U_{cq}(S)$. Other H atoms were placed in calculated positions, with C-H = 0.96 (for CH₃), 0.97 (for CH₂) or 0.93 Å (for aromatic), and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART-W2K/NT* (Bruker, 2003); cell refinement: *SAINT-W2K/NT* (Bruker, 2003); data reduction: *SAINT-W2K/NT*; program(s) used to solve structure: *SHELXTL-NT* (Bruker, 2003); program(s) used to refine structure: *SHELXTL-NT*; molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXTL-NT*.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2003). SAINT-W2K/NT (Version 5.0), SMART-W2K/NT (Version 5.6) and SHELXTL-NT (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kakeya, M., Fujihara, T. & Nagasawa, A. (2004). Acta Cryst. E60, m893-m894.
- Kakeya, M., Fujihara, T. & Nagasawa, A. (2006). Acta Cryst. E62, m553-m554.
- Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K., Fronczek, F. R., (2005). *Acta Cryst.* E61, o2736–o2738.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.